On the strong convergence for weighted sums of negatively superadditive dependent random variables

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

On the strong convergence for weighted sums of negatively superadditive dependent random variables

In this article, some strong convergence results for weighted sums of negatively superadditive dependent random variables are studied without assumption of identical distribution. The results not only generalize the corresponding ones of Cai (Metrika 68:323-331, 2008) and Sung (Stat. Pap. 52:447-454, 2011), but also extend and improve the corresponding one of Chen and Sung (Stat. Probab. Lett. ...

متن کامل

The Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables

In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

strong convergence of weighted sums for negatively orthant dependent random variables

we discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (nod) random variables by generalized gaussian techniques. as a corollary, a cesaro law of large numbers of i.i.d. random variables is extended in nod setting by generalized gaussian techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2017

ISSN: 1029-242X

DOI: 10.1186/s13660-017-1530-9